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• Stateczność stanu równowagi można najogólniej zdefiniować jako odporność na 
małe zaburzenia. 

1. Jeśli po bardzo małym odchyleniu od stanu równowagi obciążona konstrukcja wraca do 
konfiguracji wyjściowej, to o układzie mówimy że jest stateczny (stabilny) - znajduje się w 
stanie równowagi trwałej. 

2. Jeżeli nawet najmniejsze zaburzenie powoduje ruch układu i gwałtowną zmianę konfiguracji 
mówimy że układ jest niestabilny.  

Utrata stateczności. Obciążenia krytyczne 

• O tym czy w stanie równowagi układ odkształcalny jest stabilny czy nie, decyduje 
zazwyczaj wielkość obciążenia. Obciążenie, przy którym konstrukcja może przejść ze stanu 
stabilnego do niestabilnego, nazywane jest obciążeniem krytycznym, a stan układu przy takim 
obciążeniu nazywamy stanem równowagi obojętnej lub równowagi krytycznej.

• Analiza stateczności poprzez obliczenia uwzględniające w pełni zmiany konfiguracji 
układu zachodzące ze wzrostem obciążenia jest trudna, pracochłonna i może być 
przeprowadzona, zwykle numerycznie, tylko dla mniej złożonych przypadków.            
Z tego powodu w praktyce często przyjmuje się pewne założenia upraszczające i badanie 
stateczności sprowadzone jest do zagadnienia na wartości własne, z którego można wyznaczyć 
obciążenia krytyczne.
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• Stateczność konstrukcji sprężystej możemy badać oceniając zmiany całkowitej energii 
potencjalnej ∆𝑉 wywołane przez bardzo małe odchylenie od stanu równowagi. 

Kryterium energetyczne badania stateczności

∆𝑉 = 𝛿𝑉 +
1

2!
𝛿2𝑉 +

1

3!
𝛿3𝑉 +⋯

(Podobne do rozwinięcia w szereg Taylora)

∆𝑓 = 𝑓 𝑥 + 𝑑𝑥 − 𝑓 𝑥 = 𝑓′ 𝑥 𝑑𝑥 +
1

2!
𝑓′′ 𝑥 𝑑𝑥2 +

1

3!
𝑓′′′ 𝑥 𝑑𝑥3 +⋯

trzecia 
wariacja V

Całkowity przyrost energii potencjalnej układu odkształcalnego 
wywołany małą zmianą (wariacją) pola przemieszczeń można przedstawić jako:

➢ Jeśli ∆𝑉 > 0, to odchylenie od stanu równowagi wymaga dostarczenia energii, a więc 
istnienia dodatkowych oddziaływań zewnętrznych 

(analizowany stan jest stanem równowagi trwałej). 

➢ Jeśli ∆𝑉 < 0 , to dowolnie małe odchylenie od stanu równowagi wywołuje 
oddawanie energii, co w rzeczywistości przejawia się w ruchu układu i przejściu w 
położenie różne od pierwotnego (stan równowagi nietrwałej).

➢ Jeśli ∆𝑉 = 0 , to układ może pozostać w położeniu pierwotnym lub przejść do nowego 
położenia równowagi (układ pozostaje w stanie równowagi obojętnej - krytycznej). 

druga 
wariacja V

pierwsza 
wariacja V
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• Warunek 𝜹𝑽 = 𝟎 jest warunkiem koniecznym równowagi! 

Aby jednak ocenić rodzaj badanego stanu równowagi, należy zbadać znak ∆𝑉. 

∆𝑉 = σ𝑖
𝑛 𝜕𝑉

𝜕𝑞𝑖
𝑑𝑞𝑖 +

1

2
σ𝑖
𝑛σ𝑗

𝑛 𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
𝑑𝑞𝑖 𝑑𝑞𝑗

Zgodnie z kryterium Lagrange’a-Dirichleta ograniczymy się do uwzględnienia pierwszych 
i drugich pochodnych 𝑉. Zapisując w postaci macierzowej:

• W metodzie elementów skończonych całkowita energia potencjalna układu staje się po dyskretyzacji 
funkcją przemieszczeń węzłowych   𝑉 𝑞1, 𝑞2, … , 𝑞𝑛 . 

• Przyrost energii ∆𝑉odpowiadający zaburzeniu 𝑑 𝑞 = 𝑑𝑞1, 𝑑𝑞2, … , 𝑑𝑞𝑛 możemy przedstawić w 
postaci:

∆𝑉 =
𝜕𝑉

𝜕𝑞1
, … ,

𝜕𝑉

𝜕𝑞𝑛

𝑑𝑞1
⋮

𝑑𝑞𝑛

+
1

2
𝑑𝑞1, … , 𝑑𝑞𝑛

𝜕2𝑉

𝜕𝑞𝑖
2 ⋯

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑛
⋮ ⋱ ⋮

𝜕2𝑉

𝜕𝑞𝑛𝜕𝑞𝑖
⋯

𝜕2𝑉

𝜕𝑞𝑛
2

𝑑𝑞1
⋮

𝑑𝑞𝑛

Zerowanie się pierwszego członu równania jest więc warunkiem koniecznym równowagi ustroju, 
a z równowagą krytyczną mamy do czynienia, gdy dodatkowo drugi człon równania jest równy zero. 

• Podstawowe kryterium energetyczne badania stateczności, tzw. kryterium Lagrange’a-Dirichleta, 
ogranicza się do badania drugiej wariacji: przy 𝛿2𝑉 > 0 – równowaga trwała,

przy 𝛿2𝑉 < 0 – równowaga nietrwała,
przy 𝛿2𝑉 = 0 – stan równowagi krytycznej (obojętnej).

(Energetyczna metoda badania stateczności) 
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W efekcie warunkiem równowagi krytycznej jest układ równań 

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
𝑑𝑞 = 0

• Przyjmujemy zwykle, że mamy do czynienia z obciążeniem jednoparametrowym, które 
jest określone przez założony rozkład sił zewnętrznych i nieustalony skalarny mnożnik 𝜆∗ . 

𝑑𝑒𝑡
𝜕2𝑉 𝜆∗
𝜕𝑞𝑖𝜕𝑞𝑗

= 0

• Podobnie jak w analizie drgań własnych, każdej wartości 𝜆∗ odpowiada wektor 𝑑𝑞 𝑖, 
który opisuje kształt deformacji przy utracie stateczności.

∆𝑉 =
𝜕𝑉

𝜕𝑞1
, … ,

𝜕𝑉

𝜕𝑞𝑛

𝑑𝑞1
⋮

𝑑𝑞𝑛

+
1

2
𝑑𝑞1, … , 𝑑𝑞𝑛

𝜕2𝑉

𝜕𝑞𝑖
2 ⋯

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑛
⋮ ⋱ ⋮

𝜕2𝑉

𝜕𝑞𝑛𝜕𝑞𝑖
⋯

𝜕2𝑉

𝜕𝑞𝑛
2

𝑑𝑞1
⋮

𝑑𝑞𝑛

Zerowanie się pierwszego członu równania jest więc warunkiem koniecznym równowagi ustroju, 
a z równowagą krytyczną mamy do czynienia, gdy dodatkowo drugi człon równania jest równy zero. 

Wówczas energia potencjalna 𝑉 uzależniona jest od wartości parametru 𝜆∗. 
Rozwiązanie sprowadza się do warunku:
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Przykład 1 Pręt nieskończenie sztywny na zginanie i sprężysty przy ściskaniu + sprężynka

Energię potencjalną tego pręta możemy wyrazić wzorem:

𝑉 =
1

2
𝑘1𝑞1

2 +
1

2
𝑘2𝑞2

2 − 𝜆∗𝑃𝑞1 −𝜆∗𝑃
𝑞2

2

2𝑙

Badamy przyrost ∆𝑉 odpowiadający zmianie całkowitej 
energii potencjalnej przy zaburzeniu 𝑑𝑞 :

∆𝑉 =
𝜕𝑉

𝜕𝑞1
, … ,

𝜕𝑉

𝜕𝑞𝑛

𝑑𝑞1
⋮

𝑑𝑞𝑛

+
1

2
𝑑𝑞1, … , 𝑑𝑞𝑛

𝜕2𝑉

𝜕𝑞𝑖
2 ⋯

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑛
⋮ ⋱ ⋮

𝜕2𝑉

𝜕𝑞𝑛𝜕𝑞𝑖
⋯

𝜕2𝑉

𝜕𝑞𝑛
2

𝑑𝑞1
⋮

𝑑𝑞𝑛

∆𝑉 = 𝑘1𝑞1 − 𝜆∗𝑃, 𝑘2𝑞2 − 𝜆∗
𝑃

𝑙
𝑞2

𝑑𝑞1
𝑑𝑞2

+
1

2
𝑑𝑞1, 𝑑𝑞2

𝑘1 0

0 𝑘2−𝜆∗
𝑃

𝑙

𝑑𝑞1
𝑑𝑞2

𝑘1 =
𝐸𝐴

𝑙

𝑞1

𝑞2

𝜆𝑷

Δ = 𝑙 1 − 𝑐𝑜𝑠𝛼 ≅
𝑞2

2

2𝑙

𝑙

𝑘2

w stanie 
równowagi = 0 = 0

𝑞1 = ൗ
𝜆∗𝑃

𝑘1
𝑞2 = 0

𝑑𝑒𝑡
𝑘1 0

0 𝑘2−𝜆∗
𝑃

𝑙

= 0

𝜆∗ 𝑃 = 𝑘2𝑙

Dla takiej wartości obciążenia ustrój przechodzi w stan krytyczny
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Analiza MES wyboczenia prętów ściskanych

Ściskany pręt znajduje się w stanie równowagi: 

𝑑𝑥

𝑑𝑥
𝛼

𝑑𝑢 = 𝑑𝑥 1 − 𝑐𝑜𝑠𝛼 ≅
𝑤∗
′ 2

2
𝑑𝑥

∆𝑉 = 𝛿𝑉 +
1

2!
𝛿2𝑉 +

1

3!
𝛿3𝑉 +⋯

W celu określenia warunków stanu krytycznego należy zbadać nieliniową część przyrostu ∆𝑉, która wiąże się w przypadku ściskania 
prętów z zaburzeniem osiowości (zginaniem). 

= 0

Wskutek ugięcia przekroje każdego elementu pręta o długości 𝑑𝑥 zbliżą się mierząc wzdłuż osi pręta o odległość 𝑑𝑢 . 

Praca obciążeń zewnętrznych na przemieszczeniach będących efektem zaburzenia:

𝑷

𝑥

𝑤 𝑥 𝒈 𝑁/𝑚

𝑁 𝑥

𝑙

∆𝑊𝑧 = න

0

𝑙

𝜆𝑁∗ 𝑥
𝑤∗
′ 2

2
𝑑𝑥

siła normalna w przekroju

Przyrost energii potencjalnej odkształcenia wiąże się z deformacją zgięciową: ∆𝑈 = න

0

𝑙

𝐸𝐼
𝑤∗
′′ 2

2
𝑑𝑥

Przyrost całkowitej energii potencjalnej wywołane zaburzeniem 𝑤∗ jest równy:

∆𝑉 = ∆𝑈 − ∆𝑊𝑧 =
1

2
න

0

𝑙

𝐸𝐼 𝑤∗
′′ 2𝑑𝑥 −

𝜆∗
2
න

0

𝑙

𝑁∗ 𝑥 𝑤∗
′ 2𝑑𝑥

(W celu uproszczenia zapisu często przyjmuje się oznaczenie 𝒒𝒊 zamiast 𝒅𝒒𝒊 )Niech 𝒘∗ - bardzo małe zaburzenie ugięcie pręta
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W każdym elemencie skończonym ugięcie 𝑤∗ możemy przedstawić za pomocą funkcji kształtu dla elementu belki.

𝑤∗ 𝜉 = 𝑁1 𝜉 ,𝑁2 𝜉 , 𝑁3 𝜉 ,𝑁4 𝜉

𝑞1
𝑞2
𝑞3
𝑞4 𝑒

𝑁1(𝜉) = 1 − 3
𝜉2

𝑙𝑒
2 + 2

𝜉3

𝑙𝑒
3 ,

𝑁2(𝜉) = 𝜉 − 2
𝜉2

𝑙𝑒
+
𝜉3

𝑙𝑒
2 ,

𝑁3(𝜉) = 3
𝜉2

𝑙𝑒
2 − 2

𝜉3

𝑙𝑒
3 ,

𝑁4(𝜉) =
−𝜉2

𝑙𝑒
+
𝜉3

𝑙𝑒
2 .

𝑤′∗ 𝜉 = 𝑁′1 𝜉 , 𝑁′2 𝜉 ,𝑁′3 𝜉 , 𝑁′4 𝜉 𝑞 𝑒

𝑤′′∗ 𝜉 = 𝑁′′1 𝜉 , 𝑁′′2 𝜉 ,𝑁′′3 𝜉 ,𝑁′′4 𝜉 𝑞 𝑒

Zmianę całkowitej energii potencjalnej ∆𝑉𝑒 w elemencie skończonym o długości 𝑙𝑒 można więc przedstawić jako:

∆𝑉𝑒=
𝐸𝐼

2
𝑞 𝑒න

0

𝑙𝑒

𝑁′′ 𝑁′′ 𝑑𝜉 𝑞 𝑒 −
𝜆∗
2

𝑞 𝑒න

0

𝑙

𝑁∗ 𝑥 𝑁′ 𝑁′ 𝑑𝜉 𝑞 𝑒

Otrzymamy stąd
∆𝑉𝑒=

1

2
𝑞 𝑒 𝑘 𝑒 𝑞 𝑒 −

𝜆∗
2

𝑞 𝑒 𝑘𝜎 𝑒 𝑞 𝑒

∆𝑉𝑒=
1

2
𝑞 𝑒 𝑘 𝑒 − 𝜆∗ 𝑘𝜎 𝑒 𝑞 𝑒

𝑘𝜎 𝑒 =
1

30𝑙𝑒

36 3𝑙𝑒 −36 3𝑙𝑒
3𝑙𝑒 4𝑙𝑒

2 −3𝑙𝑒 −𝑙𝑒
2

−36 −3𝑙𝑒 36 −3𝑙𝑒
3𝑙𝑒 −𝑙𝑒

2 −3𝑙𝑒 4𝑙𝑒
2

Macierz sztywności geometrycznej elementu belkowego:

Jeśli siła normalna w przekroju jest stała i ma 
wartość jednostkową 𝑵∗(𝝃) = 𝟏 możemy wyliczyć:

𝑘 𝑒 =
2𝐸𝐼

𝑙𝑒
3

6 3𝑙𝑒 −6 3𝑙𝑒
3𝑙𝑒 2𝑙𝑒

2 −3𝑙𝑒 𝑙𝑒
2

−6 −3𝑙𝑒 6 −3𝑙𝑒
3𝑙𝑒 𝑙𝑒

2 −3𝑙𝑒 2𝑙𝑒
2

Macierz sztywności elementu belkowego:

Jeśli siła w elemencie skończonym zmienia się liniowo od 

zera do wartości jednostkowej:  𝑁∗(𝜉) = 1 −
𝜉

𝑙𝑒
:

𝑘𝜎 𝑒 =
1

60𝑙𝑒

30 0 −36 6𝑙𝑒
0 6𝑙𝑒

2 0 −𝑙𝑒
2

−36 0 36 −6𝑙𝑒
6𝑙𝑒 −𝑙𝑒

2 −6𝑙𝑒 2𝑙𝑒
2

Macierz sztywności geometrycznej elementu belkowego:
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W modelu MES składającym się z wielu elementów skończonych obliczamy zmianę energii ∆𝑉
całego układu, która jest sumą przyrostów energii ∆𝑉𝑒 wszystkich elementów przy małym 
zaburzeniu stanu równowagi:

∆𝑉 =
1

2
𝑞 𝐾 − 𝜆∗ 𝐾𝜎 𝑞

Macierz zależy od sił wewnętrznych, które powinny być wcześniej obliczone dla 
liniowego zadania statyki z podanym obciążeniem. 
Otrzymujemy ostatecznie uogólnione zadanie na wartości własne:

𝐾 − 𝜆∗ 𝐾𝜎 𝑞 =0

• Wartości własne określają mnożnik skalarny 𝜆∗ , który mówi, ile razy większe 
powinno być obciążenie od wstępnie założonego żeby konstrukcja znalazła się w 
stanie równowagi krytycznej. 

• Odpowiednie wektory własne 𝑞 𝑖 definiują kształt deformacji dla kolejnych 
obciążeń krytycznych. 

• Podobnie jak w analizie drgań własnych, wektory własne wyznaczane są z 
dokładnością do stałego mnożnika i nie dają informacji o skali deformacji.
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Przykład 2 Obliczyć za pomocą najprostszego modelu MES siłę krytyczną dla 
pręta obciążonego jedynie stałą siłą ściskającą

Rozwiązanie:

2𝐸𝐽

𝑙3

6 3𝑙
2𝑙2

−6
−3𝑙
6

3𝑙
𝑙2

−3𝑙
2𝑙2

−
𝜆∗
30𝑙

36 3𝑙
4𝑙2

−36
−3𝑙
36

3𝑙
−𝑙2

−3𝑙
4𝑙2

𝑞1
𝑞2
𝑞3
𝑞4

=

0
0
0
0

Po uwzględnieniu warunków brzegowych:

2𝑙2 𝑙2

𝑙2 2𝑙2
−

𝜆∗𝑙
2

60𝐸𝐼
4𝑙2 −𝑙2

−𝑙2 4𝑙2
𝑞2
𝑞4

=
0
0

podstawiamy:
𝜆 =

𝜆∗𝑙
2

60𝐸𝐼
2 − 4𝜆 1 + 𝜆
1 + 𝜆 2 − 4𝜆

𝑞2
𝑞4

=
0
0

Równanie charakterystyczne:

2 − 4𝜆 2 − 1 + 𝜆 2 = 15𝜆2 − 18𝜆 + 3 = 0

pierwiastki:
𝜆1 =

1
5

𝜆2 = 1

𝜆1
∗ =

12𝐸𝐼

𝑙2

𝜆2
∗ =

60𝐸𝐼

𝑙2

𝑞4 = 𝛼∗

𝑞 1 = 0,−𝛼∗, 0, 𝛼∗

𝑞 2 = 0, 𝛼∗, 0, 𝛼∗

𝑞2 = −𝛼∗ 𝑞4 = 𝛼∗

𝑞2 = 𝛼∗

𝑞4 = 𝛼∗

𝑃𝑖
𝑘𝑟 =

𝜋2𝐸𝐼

ൗ𝑙 𝑖

2

Rozwiązanie ścisłe:

𝑃1
𝑘𝑟 =

𝜋2𝐸𝐼

𝑙2
=
9.8696 ∙ 𝐸𝐼

𝑙2

𝑃2
𝑘𝑟 =

𝜋2𝐸𝐼

ൗ𝑙 2

2 =
39.4784 ∙ 𝐸𝐼

𝑙2

𝑷
𝑙

𝑞1
𝑞2 𝑞3 𝑞4

1 2𝐾 − 𝜆∗ 𝐾𝜎 𝑞 =0

1 r-nie: 2 − 4 ∙
1

5
𝑞2 + 1 +

1

5
𝑞4 = 0 → 1.2 𝑞2 + 1.2𝑞4 = 0

1 r-nie: 2 − 4 ∙ 1 𝑞2 + 1+ 1 𝑞4 = 0 → -2 𝑞2 + 2𝑞4 = 0
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Przykład 3 Obliczyć za pomocą najprostszego modelu MES siłę krytyczną dla 
pręta utwierdzonego i obciążonego wydatkiem sił 𝒑𝟎

Rozwiązanie:

2𝐸𝐽

𝑙3
6 −3𝑙
−3𝑙 2𝑙2

−
𝜆∗
60𝑙

36 −6𝑙
−6𝑙 2𝑙2

𝑞3
𝑞4

=
0
0

Po uwzględnieniu warunków brzegowych:

podstawiamy:
𝜆 =

𝜆∗𝑙
2

120𝐸𝐼
6 − 36𝜆 −3𝑙 + 6𝑙𝜆
−3𝑙 + 6𝑙𝜆 2𝑙2 − 2𝑙2𝜆

𝑞3
𝑞4

=
0
0

Równanie charakterystyczne: 36𝜆2 − 48𝜆 + 3 = 0

pierwiastki:

𝜆1 = 0,06574

𝜆2 = 1,268

𝜆1
∗ = 7.89

𝐸𝐼

𝑙2

𝜆2
∗ = 152

𝐸𝐼

𝑙2

𝑙

𝑞1
𝑞2 𝑞3

𝑞4

𝒑𝟎 𝑁/𝑚
1 2

𝒑𝟎∗ = 𝜆1
∗
1

𝑙
= 7.89

𝐸𝐼

𝑙3

Obciążenie krytyczne:

7.837
𝐸𝐼

𝑙3
Rozwiązanie analityczne:

𝑞4 = 𝛼∗

𝑞 1 = 0,0, 0.71733 ∙ 𝑙𝛼∗, 𝛼∗

𝑞 2 = 0,0, 0.1162 ∙ 𝑙𝛼∗, 𝛼∗

𝑞3 = 0.71733 ∙ 𝑙𝛼∗

𝑞4 = 𝛼∗

𝑞3 = 0.1162 ∙ 𝑙𝛼∗

𝑞4 = 𝛼∗

𝜆∗ =
𝜆 ∙ 120𝐸𝐼

𝑙2

𝐾 − 𝜆∗ 𝐾𝜎 𝑞 =0
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Przykład 4 Wyznaczyć siłę krytyczną i odpowiednią postać utraty stateczności 
dla ustroju przedstawionego na rysunku.

𝑷
𝑙/2 𝑙/2

𝑘
𝐸𝐼

𝑞1 𝑞2
𝑞3 𝑞4

1 2 3

4

𝑞5 𝑞6

𝑞7

1 2

3

𝐾 − 𝜆∗ 𝐾𝜎 𝑞 =0

𝑘 1 = 𝑘 2 =
2𝐸𝐼

𝑙𝑒
3

6 3𝑙𝑒 −6 3𝑙𝑒
3𝑙𝑒 2𝑙𝑒

2 −3𝑙𝑒 𝑙𝑒
2

−6 −3𝑙𝑒 6 −3𝑙𝑒
3𝑙𝑒 𝑙𝑒

2 −3𝑙𝑒 2𝑙𝑒
2

6 3𝑙𝑒 −6 3𝑙𝑒
2𝑙𝑒

2 −3𝑙𝑒 𝑙𝑒
2

+6 −3𝑙𝑒
+2𝑙𝑒

2

6 3𝑙𝑒 −6 3𝑙𝑒
2𝑙𝑒

2 −3𝑙𝑒 𝑙𝑒
2

6 −3𝑙𝑒
2𝑙𝑒

2

𝐾 =
2𝐸𝐼

𝑙𝑒
3

+
𝑘𝑙𝑒

3

2𝐸𝐼
−

𝑘𝑙𝑒
3

2𝐸𝐼

𝑘𝑙𝑒
3

2𝐸𝐼

𝑘 3 =
2𝐸𝐼

𝑙𝑒
3

𝑘𝑙𝑒
3

2𝐸𝐼
−
𝑘𝑙𝑒

3

2𝐸𝐼

−
𝑘𝑙𝑒

3

2𝐸𝐼

𝑘𝑙𝑒
3

2𝐸𝐼

Macierz globalna sztywności:

symetryczna
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𝑷
𝑙/2 𝑙/2

𝑘
𝐸𝐼

𝑞1 𝑞2
𝑞3 𝑞4

1 2 3

4

𝑞5 𝑞6

𝑞7

1 2

3

𝐾 − 𝜆∗ 𝐾𝜎 𝑞 =0

𝑘𝜎 1 = 𝑘𝜎 2 =
1

30𝑙𝑒

36 3𝑙𝑒 −36 3𝑙𝑒
3𝑙𝑒 4𝑙𝑒

2 −3𝑙𝑒 −𝑙𝑒
2

−36 −3𝑙𝑒 36 −3𝑙𝑒
3𝑙𝑒 −𝑙𝑒

2 −3𝑙𝑒 4𝑙𝑒
2

36 3𝑙𝑒 −36 3𝑙𝑒
4𝑙𝑒

2 −3𝑙𝑒 −𝑙𝑒
2

+36 −3𝑙𝑒
+4𝑙𝑒

2

36 3𝑙𝑒 −36 3𝑙𝑒
4𝑙𝑒

2 −3𝑙𝑒 −𝑙𝑒
2

36 −3𝑙𝑒
4𝑙𝑒

2

𝐾𝜎 =
1

30𝑙𝑒

Macierz globalna sztywności geometrycznej:

symetryczna
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Po uwzględnieniu warunków brzegowych: 𝑞1 = 𝑞2 = 𝑞5 = 𝑞6 = 𝑞7 = 0

2𝐸𝐼

𝑙𝑒
3

12 +
𝑘𝑙𝑒

3

2𝐸𝐼
0

0 4𝑙𝑒
2

−
𝜆∗
30𝑙𝑒

72 0
0 8𝑙𝑒

2
𝑞3
𝑞4

=
0
0

podstawiamy:

𝜆 =
𝑙𝑒
2

60𝐸𝐼
∙ 𝜆∗ 𝛽 =

𝑘𝑙𝑒
3

2𝐸𝐼

12 + 𝛽 − 72𝜆 0

0 4𝑙𝑒
2 1 − 2𝜆

𝑞3
𝑞4

=
0
0

Równanie charakterystyczne:

12 + 𝛽 − 72𝜆 1 − 2𝜆 = 0 pierwiastki: 𝜆1 =
12 + 𝛽

72
𝜆2 =

1

2

𝜆1
∗ =

60𝐸𝐼

𝑙𝑒
2 𝜆1 = 40 +

20

6
𝛽

𝐸𝐼

𝑙𝑒
2

Jeśli 𝜷 < 𝟐𝟒 → 𝑘 <
48𝐸𝐼

𝑙𝑒
3 → 𝜆1 < 𝜆2 (słaba sprężyna)

i wtedy utrata stateczności zajdzie w postaci 1:

𝜆2
∗ =

60𝐸𝐼

𝑙𝑒
2 𝜆2 =

30𝐸𝐼

𝑙𝑒
2

Jeśli 𝜷 > 𝟐𝟒 → 𝑘 >
48𝐸𝐼

𝑙𝑒
3 → 𝜆2 < 𝜆1 (silna sprężyna)

i wtedy utrata stateczności zajdzie w postaci 2:

𝑞 1 = 0,0, 𝑞3, 0,0,0,0

𝑞 2 = 0,0, 0, 𝑞4, 0,0,0

𝑷



15

BADANIE STATECZNOŚCI ELEMENTÓW KONSTRUKCYJNYCH. 
WYBOCZENIE PŁYT CIENKOŚCIENNYCH

• W rzeczywistych konstrukcjach (gdy jeden lub dwa wymiary są małe w porównaniu do 
pozostałych), przy pewnych krytycznych wartościach obciążeń, występuje zjawisko zmiany 
postaci równowagi ustroju, wywołane nawet niewielkimi zaburzeniami. 

• Przejście z jednej postaci równowagi do drugiej związane jest z reguły z bardzo dużym wzrostem 
deformacji i naprężeń, prowadzącym w wielu przypadkach do zniszczenia ustroju. 

• Badanie stateczności polega na sprawdzeniu, czy konstrukcja jest odporna na zmianę postaci 
równowagi pod wpływem zaburzeń. 

• Celem jest wyznaczenie takiej wartości obciążenia, przy którym konstrukcja traci stateczność, 
tzn. dowolnie małe zaburzenie prowadzi do zmiany postaci równowagi. 

• Przykładowo dla smukłej, prostej belki ściskanej model zjawiska zakłada dwie postacie 
równowagi występujące równocześnie przy obciążeniu siłą krytyczną Pkr w punkcie bifurkacji.

Postać pierwotna dotyczy stanu przed utratą stateczności, w którym oś belki pozostaje prosta, druga postać dotyczy 
stanu po utracie stateczności, w którym oś belki jest wygięta.
W rzeczywistości przy obciążeniu krytycznym belka ulega zwykle zniszczeniu.
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• Punkt bifurkacji jest cechą równań w modelu matematycznym opisującym utratę stateczności i 
często niedokładnie oddaje fizykę zjawiska. 

• W przypadku płyty, po utracie stateczności ustrój może jeszcze przenosić obciążenia pozostając w 
równowadze i w stanie sprężystym, a przejście z jednej postaci równowagi w drugą jest łagodne. 

• Przekroczenie obciążenia krytycznego w przypadku płyt zwykle nie prowadzi do ich zniszczenia (zależy 

to między innymi od sposobu podparcia krawędzi). Płyta zaczyna się falować oraz znacznie spada jej 
sztywność w kierunku prostopadłym do płaszczyzny środkowej. 

• Często takie zachowanie się płyty uważa się za niedopuszczalne i obciążenie krytyczne przyjmuje się 
za obciążenie niszczące. Dokładne zachowanie się płyty ściskanej lub ścinanej przy obciążeniu 
przekraczającym obciążenie krytyczne możemy otrzymać rozwiązując nieliniowe równanie 
równowagi. Jest to zadanie dość trudne, szczególnie przy złożonych obciążeniach i warunkach 
brzegowych. 

• Znajomość postaci wyboczenia pozwala konstruktorowi zaprojektować odpowiednie wzmocnienia 
zwykle w postaci usztywniających żeber, które podwyższają wartość obciążenia krytycznego. W 
typowych cienkościennych konstrukcjach lotniczych wzmocnienia w postaci żeber i podłużnic 
stanowią szkielet podpierający cienkie pokrycie. Innym często stosowanym sposobem podwyższenia 
obciążenia krytycznego jest tworzenie płyt przekładkowych o dużej zastępczej sztywności płytowej.
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• Cienkościenne powłoki tracą stateczność ulegając pofalowaniu w obszarach ściskanych i ścinanych. 

• Określenie obciążeń krytycznych dla powłok jest znacznie trudniejsze niż dla płyt ze względu na 
bardziej złożone równania, w których uwzględnione są jej krzywizny, a krytyczna wartość obciążenia 
odpowiadająca punktowi bifurkacji może być zawyżona kilkakrotnie. 

• Często w przypadku powłok nie można mówić o naprężeniach krytycznych, jako o wartości, przy 
której następuje łagodne przejście z jednej postaci równowagi w drugą, gdyż przejście może mieć 
charakter przeskoku. Rzeczywiste powłoki są często bardzo dalekie od ideału. Istnienie wstępnych 
niedokładności obniża znacznie wartość obciążenia krytycznego oraz ułatwia proces przeskoku. Z tego powodu 
licząc się z realnym wykonaniem powłok jak również z faktem, ze bardziej grubościenne powłoki można wykonać 
dokładniej niż cienkościenne podwyższamy odpowiednio współczynnik bezpieczeństwa podczas projektowania. 

• Istnieje wiele poradników inżynierskich, w których na podstawie wieloletnich analiz i badań 
doświadczalnych podano szereg wzorów określających bezpieczne ze względu na wyboczenie 
obciążenie dla różnych powłok. Niezbędna jest jednak przeważnie znajomość obciążenia krytycznego, którego 
sposób określenia zostanie tutaj przedstawiony. 
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• Dokładne zachowanie się powłoki ściskanej lub skręcanej przy obciążeniu zbliżonym lub większym od 
obciążenia krytycznego z uwzględnieniem rzeczywistych kształtów geometrycznych można otrzymać 
rozwiązując nieliniowe równania równowagi. Jest to zadanie trudne szczególnie przy złożonych kształtach 
geometrycznych, warunkach brzegowych i obciążeniach.

• Obecnie takie przypadki analizowane są głównie za pomocą MES. W metodzie elementów skończonych 
najprostsze obliczenia stateczności konstrukcji polegają na znalezieniu postaci utraty stateczności i wartości 
obciążeń odpowiadających przejściu z jednej postaci równowagi w drugą w punkcie bifurkacji. 

• Największe znaczenie ma pierwsza postać utraty stateczności.

Linearyzacja nieliniowych równań wokół początkowego położenia równowagi (belek, płyt, 
powłok) prowadzi do układu równań w postaci zagadnienia na wartości własne:

Określenie obciążenia krytycznego oraz postaci wyboczenia następuje w dwóch krokach:

1) Rozwiązanie statyczne dla określonego obciążenia ( 𝐾 𝑞 = 𝑃 ), po którym następuje obliczenie
macierzy 𝐾𝜎 ,

2) Rozwiązanie zagadnienia na wartości własne czyli obliczenie 𝜆∗ i 𝑞 ,

gdzie: 𝜆∗ jest współczynnikiem mówiącym, ile razy należy zwiększyć obciążenie statyczne 𝑃 , dla
którego określana była macierz 𝐾𝜎 , aby stało się ono obciążeniem krytycznym,

𝑞 – wektorem opisującym postać utraty stateczności.

𝐾 − 𝜆∗ 𝐾𝜎 𝑞 =0
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Przykład 5a Płyta ściskana podparta przegubowo na brzegach 

Płyta o wymiarach a= 885mm, b= 302mm, h = 2,5mm, wykonana z duraluminium (E=70000 MPa, =0.33) została

obciążona wydatkiem ściskającym na brzegu i swobodnie podparta na czterech krawędziach (uz=0).

𝜎𝑘𝑟 = 𝑘
𝜋2

12 1 − 𝜈2
𝐸ℎ2

𝑏2

(rozwiązanie ścisłe)

1. Analiza statyczna
(PRESTRESS ON)

2. Buckling analysis
(pierwsza postać)

2. Buckling analysis
(druga postać)

Zadane obciążenie: 
25 N/mm

Naprężenia 
ściskające 10 MPa

Naprężenia krytyczne 
1.78276*10 MPa=

=17.8276 MPa

Model MES
(shell181)

𝜎𝑘𝑟 = 17.7 𝑀𝑃𝑎
𝑘 = 4

Naprężenia krytyczne 
1.96397*10 MPa=

=19.6397 MPa



20

Przykład 5b Płyta ściskana utwierdzona na brzegach 

Płyta o wymiarach a= 885mm, b= 302mm, h = 2,5mm, wykonana z duraluminium (E=70000 MPa, =0.33) została

obciążona wydatkiem ściskającym na brzegu i utwierdzona na brzegach.

𝜎𝑘𝑟 = 𝜉
𝜋2

12 1 − 𝜈2
𝐸ℎ2

𝑏2

(rozwiązanie ścisłe)

1. Analiza statyczna
(PRESTRESS ON)

2. Buckling analysis
(pierwsza postać)

2. Buckling analysis
(druga postać)

Zadane obciążenie: 
25 N/mm

Naprężenia 
ściskające 10 MPa

Naprężenia krytyczne 
3.30754*10 MPa=

=33.0754 MPa

Model MES
(shell181)

𝜎𝑘𝑟 = 32.5 𝑀𝑃𝑎
𝜉 = 7.35

Naprężenia krytyczne 
3.36877*10 MPa=

=33.6877 MPa
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Przykład 6 Płyta ścinana
Płyta o wymiarach a=630mm, b=520mm, h=2mm, została wykonana z kompozytu o zastępczych własnościach 
mechanicznych równych: moduł Younga E=45926 MPa, liczba Poissona =0.33. W celu wprowadzenia stałych 
naprężeń stycznych płyta została umieszczona w czworoboku przegubowym wykonanym z prętów stalowych o 
przekroju Ap=1000 mm2 (Ep=2·105 MPa, p=0,33) obciążonym siłą pionową w narożu  Płyta z prętami ma tylko 
wspólne przemieszczenia – połączona jest przegubowo.

(rozwiązanie ścisłe)

𝜏𝑘𝑟 = 𝜉
𝜋2

12 1 − 𝜈2
𝐸ℎ2

𝑏2

2. Buckling analysis
(pierwsza postać)

2. Buckling analysis
(druga postać)

1. Analiza statyczna
(PRESTRESS ON)

Średnie naprężenia tnące:

1000N/520mm/2mm=

=0.9615 MPa

Naprężenia krytyczne 
5.45922*0.9615 MPa=

=5.249 MPa

𝝉𝒌𝒓 = 8.25
𝜋2

12 1 − 0.332
45926 ∙ 22

5202
= 𝟓.𝟏𝟖𝑀𝑃𝑎

Fkr=5459N

Fkr=5.18MPa*520mm*2mm=5387N

Model MES
(shell181 i Link180)
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𝜎𝑘𝑟
𝐴 ≈ 0.6𝐸

ℎ

𝑅
= 0.6 ∙ 7𝑒4

0.5

100
= 210𝑀𝑃𝑎

𝜎𝑘𝑟
𝐵 ≈ 0.37𝐸

ℎ

𝑅
= 129.5𝑀𝑃𝑎

𝜎𝑘𝑟
𝐷 ≈ 0.26𝐸

ℎ

𝑅
= 91𝑀𝑃𝑎

Przykład 7a Powłoka walcowa: R=100mm, H=300mm, h=1mm, E=7e4 MPa, =0.33

𝜎𝑘𝑟
𝐷1 ≈ 0.19𝐸

ℎ

𝑅
= 66.5𝑀𝑃𝑎
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Przykład 7b Powłoka walcowa: R=100mm, H=300mm, h=0.5mm, E=7e4 MPa, =0.33

1. Analiza statyczna
(PRESTRESS ON)

1. Analiza statyczna
(PRESTRESS ON)

Model MES
(shell181)

Model MES
(shell181)

2. Buckling analysis
(pierwsza postać)

2. Buckling analysis
(pierwsza postać)

Średnie naprężenia tnące:

=20 MPa

Średnie naprężenia 
ściskające:

=20 MPa

Ściskanie

skręcanie

Naprężenia krytyczne 
5.78937*20 MPa=

=115.8 MPa

Naprężenia krytyczne 
3.37898*20 MPa=

=67.6 MPa

𝜎𝑘𝑟
𝐴 ≈ 210𝑀𝑃𝑎

𝜎𝑘𝑟
𝐵 ≈ 129.5𝑀𝑃𝑎

𝜎𝑘𝑟
𝐷 ≈ 91𝑀𝑃𝑎

𝜎𝑘𝑟
𝐷1 ≈ 66.5𝑀𝑃𝑎
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Przykład 8a Keson zginany bez pasów: L=1500mm, B=300, H=100, G=0.5, E=7e4 MPa, =0.33

/TITLE,Keson bez pasow
*SET,H,100  ! wysokosc
*SET,B,500  ! szerokosc
*SET,L,1500 ! dlugosc
*SET,npas,4 ! liczba pasow
*SET,grub,0.5 ! grubosc pokrycia
*SET,R_pas,5 !promien pasa
*SET,grub_zebr,2 ! grubosc zebra
*SET,E_SIZE,10 ! rozmiar elementow
*SET,F_SILA,1000 ! sila pionowa
*SET,pressure,0.01 
*SET,EE,7e5 
*SET,NI,.32 

1. Analiza statyczna
(PRESTRESS ON)

2. Buckling analysis
(pierwsza postać)

Obciążenie krytyczne 
.05534*.01 MPa➔ 5.5%

Obciążenie ciśnieniem 
0.01MPa (100%)

Naprężenia wzdłużne SZ 
(membrane+bending)

Naprężenia wzdłużne SZ 
(membrane)

Przemieszczenia UY
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Przykład 8b Keson zginany z pasami: L=1500mm, B=300, H=100, G=0.5, E=7e4 MPa, =0.33
/TITLE,Keson z pasami   
*SET,H,100  ! wysokosc
*SET,B,500  ! szerokosc
*SET,L,1500 ! dlugosc
*SET,npas,4 ! liczba pasow
*SET,grub,0.5 ! grubosc pokrycia
*SET,R_pas,5 !promien pasa
*SET,grub_zebr,2 ! grubosc zebra
*SET,E_SIZE,10 ! rozmiar elementow
*SET,F_SILA,1000 ! sila pionowa
*SET,pressure,0.01 
*SET,EE,7e5 
*SET,NI,.32 

Obciążenie krytyczne 
1.56*.01 MPa➔ 156%

Obciążenie ciśnieniem 
0.01MPa (100%)

Naprężenia wzdłużne SZ 
(membrane+bending)

Naprężenia wzdłużne SZ 
(membrane)

Przemieszczenia UY

1. Analiza statyczna
(PRESTRESS ON)

2. Buckling analysis
(pierwsza postać)
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Przykład 8c Keson zginany z pasami NL geom: L=1500mm, B=300, H=100, G=0.5, E=7e4 MPa, =0.33

Przemieszczenia UY
dla 883% obciążenia

Naprężenia SZ (membrane)

dla 883% obciążenia

Naprężenia SZ (membrane + bending)

dla 883% obciążenia

Obliczenia nieliniowe geometrycznie
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Przykład 8d Keson zginany z pasami PLNL geom: E=7e4 MPa, =0.33, R0.2=280MPa, Eu=500MPa

Przemieszczenia USUM
dla 205% obciążenia

Zredukowane odkształcenia 
plastyczne (membrane)

dla 205% obciążenia

Zredukowane odkształcenia 
plastyczne (membrane + bending)

dla 205% obciążenia

Obliczenia nieliniowe geometrycznie i materiałowo
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Przykład 8a Keson skręcany: L=1500mm, B=300, H=100, G=0.5, E=7e4 MPa, =0.33

1. Analiza statyczna
(PRESTRESS ON)

Obciążenie krytyczne 
FACT=.382 ➔ 38 %

Obciążenie parą sił (100%)

Przemieszczenia UY

2. Buckling analysis
(pierwsza postać)

bez pasów

bez pasów

z pasami

z pasami

Obciążenie krytyczne 
FACT=2.3107 ➔ 231 %

Przemieszczenia UY



Structural analysis of the cryostat (VNS Feasibility study 2024)
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Von Mises membrane stress (Pm) [MPa] 

Load case 1: Normal operation (P + D)
Von Mises stress (Pm+Pb) [MPa] 
Load case 1: Normal operation (P + D)

Load case 1: Normal operation (P + D)
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Mode 1

LF=3.44

Mode 2

LF=3.49

Mode 3

LF=3.49

Mode 4

LF=3.62

Mode 5

LF=3.62

Mode 6

LF=3.78

Buckling modes 1-6 for Load case 1: Normal operation (P + D)
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Accumulated Equivalent plastic strain for LF=2.41- Final model: 
Elastic – Plastic Analysis  2.4 (P + D)

Protection against Collapse from Buckling - Elastic – Plastic Analysis  2.4 (P + D)
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Steel 304L true stress strain curve

Steel 304 true stress strain curve
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